A call to incorporate early-stage drug discovery
priorities into multiomics Al benchmarking
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Correspondence Letter

The integration of complementary high-dimensional cellular data types, known as
multiomics, offers unprecedented potential to decode complex biology and accelerate
therapeutic discovery. Combined with artificial intelligence (AI), these approaches



promise to enable a more holistic understanding of cellular states, both healthy and
diseased, and their modulation by candidate drugs. When strategically embedded into
pharmaceutical pipelines, multiomics Al holds transformative potential to accelerate
and de-risk the path to novel medicines. Yet, a critical disconnect persists between
the perceived technical progress in multiomics Al research and its tangible impact
on drug development. This gap is partly anchored in limited, and often misaligned,
benchmarking standards that prioritize leaderboard-style metrics over translational
relevance. In this correspondence, leading experts drawing on academic and industry
expertise call for a rethinking of benchmarking strategies to better reflect the realities
of early-stage drug discovery. We scope broader discussions of AI benchmarking in
biology [1, 2] by focusing on priorities specific to drug discovery. Our aim is to cat-
alyze the development of systematic datasets and evaluative frameworks that provide
practical, decision-informing value tailored to therapeutic development.

Although the term multiomics remains broad and often ambiguous, its relevance
to biology-driven stages of drug discovery is becoming increasingly evident across
both target- and phenotype-based approaches (Figure 1A). By integrating molec-
ular layers (e.g., genomics, transcriptomics, proteomics) with phenotypic readouts
(e.g., high-content imaging, morphological profiling, viability assays), multiomics is
uniquely suited to capture the underlying structure of biological systems and deepen
our understanding of drug-induced biological mechanisms across diverse disease
areas and evolving drug programs. However, multiomics Al models must gain more
flexibility and adaptability to shifting assay constraints and decision points along
the pipeline to reliably and transparently surface promising drug candidates early,
while flagging likely failures before they become costly downstream (Figure 1B).
This could be achieved by learning perturbation effect fingerprints, i.e. relatable
biological knowledge representations which reliably distil relevant information from
high-dimensional and noisy data. The goal of such fingerprints is to translate and
complement the signal across bioassays of different levels of overlap, complexity,
throughput, and species of the model organism and comprehend their interplay with
candidate drugs (Figure 1C).

The promise of these fingerprints hinges on systematic and rigorous evaluation,
which needs to move beyond overfitting to narrow, over-specified datasets focused
solely on optimising technical, leaderboard-style metrics such as accuracy. When used
in isolation, such inadequate scoring risks favoring models that simply recapitulate
previously known relationships, such as annotated gene-gene or gene-compound
interactions [3], rather than discovering novel insights (Figure 1D). This creates
a fundamental tension: benchmarks may reward familiarity over discovery. In
early-stage drug discovery, this leads to cycling through known targets and optimizing
best-in-class drug designs rooted in well-characterized pathways, while overlooking
bold and vast first-in-class opportunities in uncharted biology. In later stages, this
could risk flagging only obvious, well-understood toxicity links, while missing more
subtle yet critical side-effect signals that, if undetected early, can lead to costly fail-
ures downstream. While confirming the validity of yet-unknown biological concepts
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Fig. 1 Opportunities and challenges for multiomics AI in drug discovery. (A) Multiomics
AT has broad relevance (green shading) across both target-based (left) and phenotype-first (right)
discovery strategies, supporting nearly all stages from early biology through feedback-informed chem-
istry to clinical trials via improved integration and benchmarking. (B) Multiomics AI must flexibly
navigate the evolving landscape of (bio)assay and data readout constraints as therapeutic programs
advance to prioritize informative experiments and discontinue failing candidates as early as possi-
ble (dashed lines). (C) Central to this effort is learning biologically meaningful perturbation effect
fingerprints that reliably compare between control (e.g., modelling healthy) and perturbation (e.g.,
modelling diseased) states, supporting insights into their modulation by candidate drugs. These fin-
gerprints must adapt to increasing system complexity, spanning noisy single-cell data, heterogeneous
cell lines, organoid-like structures, animal models, and patient samples. (D) Yet, robust benchmark-
ing remains a barrier as current evaluations often rely on narrow, highly-overlapping datasets that
reward models for recovering known biology (model I), rather than those capable of generalizing and
uncovering novel insights (model II). The purpose-built next generation of benchmarks should there-
fore increase the coverage of the biological areas, systems, and species and include datasets of varying
size, overlap, and distributions.

is challenging at first, pharmaceutical companies are uniquely positioned to address
this through feedback loops between computational and experimental teams. With
the resources to run experiments, plausible hypotheses can and should get tested
and drive iterative refinement of multiomics Al models, implementing the so-called
lab-in-the-loop approach [4, 5].

However, current multiomics AI models must overcome much broader challenges
of benchmarking robustness to meaningfully support drug discovery. The limited
scope of current benchmarks is understandable: the multiomics field is still emerging
and faces unique and significant hurdles. Generating high-quality, large-scale, paired
datasets is financially demanding, and their annotation is even more technically com-
plex and resource-intensive due to lack of consensus or feasibility of human expert
interpretation. As a result, many datasets lack a ground truth reference, making it
hard to define tasks and metrics that measure real progress in representing multiomics



data. Separating meaningful model advances from small, incremental gains is often
further worsened by the absence of meaningful comparisons to alternative methods,
especially to simple, clear baselines like random rankings, statistical heuristics, linear
models or intuitive data analysis. Without such context, demonstrating added value
of complex multiomics AI models is difficult, and has proven to become a major
oversight to date [6-8].

In this letter, we advocate for designing a set of multiomic AI benchmarking tasks
tailored to real-world drug discovery goals, such as grouping genes or compounds by
functional similarity, forecasting perturbation effect fingerprints into specific biologi-
cal contexts, translating insights across modalities or species, and tracking cellular
state transitions over time. This would liberate current benchmarks, often relying
on legacy datasets from early studies, which have become de facto standards for
subsequent methods evaluation, often despite their inappropriateness for the task.
Rather than discarding these default evaluation tools designed without the drug
discovery goals in mind, we should clearly communicate their scope and limitations,
and complement them with next-generation, purpose-built tasks that better reflect
the biological and translational demands. Such benchmarks should be routinely
positioned within well-defined lower baselines and, where possible, upper bounds to
critically assess model performance and to enable fast, convenient and reproducible
evaluation of new and existing models against them. Establishing and adhering to
such standards will drive consistency across academia and industry, empowering both
interpretability-focused and action-oriented use cases.

In summary, we recommend the following core principles for developing a set of
actionable, next-generation multiomics Al benchmarks:

® Open, transparent datasets: Public release of multiomic data with detailed
quality-control metrics, standardized annotations, and transparent reporting of
dataset biases.

® Biology-inspired tasks: Development of evaluation tasks and performance mea-
sures that reflect true drug discovery impact beyond leaderboard-style metrics, and
ideally cross-validating the findings experimentally in the real world.

® Meticulous baseline comparisons: Systematic evaluation of existing models
against simple, intuitive baselines informed by the dataset biases, distributions and
coverage.

® Shared benchmarking platforms: Community-hosted repositories and leader-
boards that integrate datasets, tasks, and results to accelerate method development,
as inspired by other pharmaceutics-adjacent fields [9, 10].

We recognise that these recommendations are ambitious, but their implementa-
tion is urgent, necessary, and achievable by deliberately aligning the multiomics Al
community toward real-world impact in drug discovery.
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